
A VOD APPLICATION IMPLEMENTED IN JAVA 1

A VoD Application Implemented in Java

Accepted for publication in a special edition of Multimedia Tools and Application, Kluw-

ers Academic Publishers, 1997

ALEX DE JONG, KAREN HSING, DAVID SU falex.dejong,karen.hsing,david.sug@nist.gov

Information Technology Laboratory, National Institute of Standards and Technology, Gaithers-

burg, MD 20899

Received November, 1996

Editor:

Abstract. This article describes an implementation of a Video-on-Demand (VoD) system for

the VoD interoperability test laboratory of the National Institute of Standards and Technology.

It describes how Java can be used to implement the client side of a DAVIC based client-server

system, which consists of a video server and a Set-Top Unit (STU) client. The communication

between the video server and the STU is based on the Digital Storage Media Command and

Control (DSM-CC) protocols. The VoD application is de�ned as a set of Java classes. These

classes implement the graphical interfaces for user navigation and control. While this system is

compliant with DAVIC speci�cations, it also permits an elegant integration of DAVIC services to

the Internet environment.

Keywords: Video on Demand, Java, DSM-CC, DAVIC, Set-Top Unit

1. Introduction

A recent major advancement in information technology is in the creation, distri-

bution, and use of information. The content of information has changed from

simple text data to mixed information involving video, graphics, text, and audio.

These information sources are available remotely from distributed hosts and service

providers. Users interact with information through information appliances which

may look like a personal computer or television set-top unit. The seamless transfer

of information from content developers to information providers, to network access

providers, and �nally to users is a major issue for the success of any new appli-

cation. It is important to address the interoperability issues at an early stage of

technology development, particularly those issues that arise when users access in-

formation through appliances with various capabilities, and through networks from

many service providers.

It is expected that digital video services will become a major business sector in

the near future. The National Institute of Standards and Technology (NIST) has

established programs to foster interoperability of products and services from this

emerging industry. NIST has set up an interoperability test laboratory for the

Video-on-Demand (VoD) service, one of many digital video services. This labo-

ratory allows vendors to test the interoperability of their products with NIST's

standards-conforming implementations as well as other vendor's products. As part

2 A. DE JONG, K. HSING, AND D. SU

of this activity, NIST is undertaking two major tasks: 1) development of a VoD

reference implementation to facilitate testing, and 2) development of test meth-

ods for interoperability testing. The VoD service is based on the speci�cations of

the Digital Audio-Video Council (DAVIC), an international consortium to develop

implementation agreements for digital video applications.

\Video on Demand" means many di�erent things to di�erent people. In this

article, VoD refers to a network delivered video service that o�ers the functionality

of a home VCR (as a player only). By using a set-top unit, the service provides the

users/consumers the ability to: 1) �nd and select a content item (e.g., a movie),

and 2) interactively manage the viewing of the content such as fast forward, pause

and resume the displaying of a movie. The �rst functionality is referred to as

\navigation" and the second one \control".

In addition to this basic functionality, the service may provide the users a choice

of a language for audio and/or sub-titles (called presentation control by DAVIC).

Functions that enable loading/removal of the content to/from the service for the

providers are certainly required. Before entering VoD, a user should be able to make

a selection of a service and a service provider. The list is by no means exhaustive.

NIST's VoD reference implementation initially focuses on a set of selected core

functions to perform navigation and control.

This article describes the development of the VoD application at the client side

of NIST's VoD system which is based on a client-server architecture. Section 2

depicts the model of VoD systems and the protocol stacks included in this model as

de�ned by DAVIC. Section 3 describes why Java is chosen to implement the VoD

application and how DAVIC systems can be integrated with Internet. Sections 4

and 5 present the design of this VoD application and a sample implementation

using Java respectively. Section 6 presents the VoD testbed con�guration at NIST.

2. Architecture Based on DAVIC

DAVIC has adopted a framework for interactive services which includes VoD[1] .

A system is described in terms of reference points and information ows as shown

in �gure 1. The model includes a Service Provider System (SPS) and a Service

Consumer System (SCS)1 connected via a delivery system. For a VoD system, the

SPS corresponds to the video server while the Set-Top Unit (STU) corresponds to

the SCS. Between the server and the STU several reference points (only A1 and A9

are shown) and information ows (e.g. S1 through S4) are de�ned. The information

ows enable the connection/session set-up/tear-down (S3/S4), and the exchange of

control information (S2) and data (S1).

After initial connection set-up and con�guration of the STU{via DSM-CC User-

to-Network (U-N) [2]{the DSM-CC User-to-User (U-U) protocol stack enables re-

liable exchange of control information via the S2 information ow. A VoD applica-

tion utilizes the services provided by the DSM-CC U-U protocol to implement the

retrieval of information from the server to be used at the STU.

A VOD APPLICATION IMPLEMENTED IN JAVA 3

SPS - SCS
delivery
system

Physical Interface

Priccipal Service
Interface

Session and Transport
Service Interface

Network Service
Interface

Application Service
Interface

Service
Provider
System
(SPS)

Service
Consumer

System
(SCS)

A9 A1

S1

S2

S3

S4

Figure 1. General DAVIC Model

Server Network

Content
Source

Service
Objects

VoD
Application

CORBA
IIOP

CORBA
IIOP

TCP/IP TCP/IP

AAL5/ATM AAL5/ATM

DSMCC
U-U

DSMCC
U-U

STU

MPEG
Display

MPEG
Multiplex

MPEG
De-Multiplex

A9 A1

S1

S2

Figure 2. Video on Demand Model

Figure 2 shows a simpli�ed model of an STU and a VoD server. Only information

ows S1 and S2 are shown, including their full protocol stacks. The VoD applica-

tion, which communicates with the server via information ow S2, uses the services

provided by the DSM-CC U-U protocol. These services include Session, File, and

Directory services. These services allow the VoD application to start a session and

browse directories to retrieve �les from the server. The �les themselves can be used

within the VoD application (e.g. images and bitmaps which comprise the user's

interface).

Information ow S1 is used to carry MPEG 2 data. When a user selects to view a

movie, an S1 connection is established (using information ow S3/S4 which is not

discussed here) between the STUs and the VoD server. The STU's de-multiplexor/

decoding device handles the incoming data and displays it to the user.

4 A. DE JONG, K. HSING, AND D. SU

3. Why Java?

Interoperability between VoD services and STUs from di�erent manufacturers is

currently limited because of a variety of incompatibilities. DAVIC describes a

framework (see previous section) and has adopted standards for the communica-

tions layers, including the DSM-CC [2]. These e�orts should lead to interoperable

products in the future. Assuming that interoperability is ensured at this level, there

is still the problem of interoperability at the application level. In order to run a VoD

application on a variety of platforms, such as STUs running Operating System OS9

or more general workstations running a UNIX based OS, a VoD server has to create

dedicated applications for each platform. An option, which is embraced by DAVIC,

is to assume that the client implements an MHEG-5 engine [3] to interpret generic

application descriptions. Because of the complexity of an MHEG-5 engine, this

solution might not be economically feasible on low-cost STUs. Another solution,

which is also being studied in DAVIC, is to utilize the popular Java language used

within many World Wide Web (WWW) applications. Using Java to implement the

VoD application provides the following advantages:

� Platform independent

� Dynamic object loading

� DAVIC and Internet integration

The Java language is based on the Virtual Machine (VM) concept. The interme-

diate byte code generated by the Java compiler is interpreted by a Java interpreter
2. The Java byte code is platform independent. Because of the language's simplic-

ity, the interpreter can be kept relatively small. The basic Java interpreter is only

40 Kbytes in size; an additional 175 Kbytes is required to include basic standard

libraries [4]. This makes Java an ideal solution to provide graphical interfaces for

STUs with limited resources (up to 4 MBytes of memory) while working just as

well on high end workstations with virtually unlimited memory (16 Mbytes or more

and hard disk space far beyond this).

Since Java byte code is interpreted at run-time, dynamic additions of code to

the run-time environment are relatively easy to implement. This means that an

STU only has to retrieve objects that it needs to initiate a particular piece of an

application while remaining objects are retrieved whenever they are required.

DAVIC speci�cations 1.1 already include direct Internet access. This means that a

DAVIC based STU can access the Internet in addition to DAVIC based servers. Java

enables the use of the popular Internet browsers to access DAVIC based servers.

Products are already available that enable Java integration with a Common Ob-

ject Request Broker Architecture (CORBA). An Internet user can access a service

provider by its Universal Resource Locator (URL); after which a Java applet is

invoked. This applet in itself is a CORBA client which allows seamless integration

between Internet and DAVIC based services3.

A VOD APPLICATION IMPLEMENTED IN JAVA 5

4. Design of the VoD Application

The VoD server consists of a server directory structure which contains: movie

streams, Java objects implementing the user menus and interfaces, and bitmaps/

graphics �les used within the interfaces. Users connect their STU to the server,

either by using an Internet browser (and starting an Applet) or a small dedicated

Java program (which could be obtained via the DSM-CC Download protocol [2])

to obtain the initial application: Init. The Init application enables the user to

attach to a VoD server via the DSM-CC Session service and obtain the actual

VoD application by invoking File and Directory services.

The VoD program, depicted in the shaded area of Figure 3, is built on the DSM-

CC U-U services. The upper half consists of 2 components: a static Init component

that performs initial connection set-up, and the actual VoD program. Note that

only the Init component resides on the client before a session has been established.

The VoD program which implements user menus is loaded from the server dynam-

ically, which allows a service provider to change the program without changing

anything at the client side.

USER

STUServer

DSMCC U-UDSMCC U-U

CORBA

Program Init

LoaderStream

Session

Session

Stream

Stream

File

File

Dir

Dir

Session

Figure 3. VoD application architecture

The Session component at application level provides attach and detach functions

for Init. These functions are mapped directly into DSM-CC U-U session calls. The

loader implements �le retrieval functions for classes as well as data. Classes will

be retrieved from the server and added to the run-time environment dynamically.

Data �les such as bitmaps and graphics can be retrieved for use by the program.

The loader uses File service to retrieve requested information together with the

Directory service to open/close directories on the server. A stream interface is

layered directly on the Stream service in order to control a stream. All stream

functions are implemented as application actions which can be attached to a button

click or some other user event.

6 A. DE JONG, K. HSING, AND D. SU

The DSM-CC U-U library contains the stubs to access the Session, Directory,

File, and Stream services as speci�ed in [2]. The Common Object Request Broker

Architecture (CORBA) provides the underlying communications between the server

and STU. The client-side library stubs will be generated directly from the DSM-CC

Interface De�nition Language (IDL) speci�cations by the IDL compiler [5]. The

objects that implement the DSM-CC services are executed on the server.

5. Implementation of VoD Program

The VoD program is implemented as a set of Java objects. Java uses the O-O

methodology and includes a class (or object) library which contains basic data

types and system input/output capabilities. A powerful set of graphical interface

classes is also included. These graphical interface classes are extended with VoD

speci�c classes, such as VCR \play" or \stop" buttons, to provide a powerful set of

so-called base classes4. The base classes themselves do not implement an actual user

interface but provide the components to be used in the Graphical User Interface

(GUI).

The VoD GUI consists of derived classes that actually implement the VoD menus

and are speci�c to the VoD server contents. Only a derived class needs to be

implemented to cover the details of a particular menu. For example, an addition

of a new movie to a VoD server normally requires a movie speci�c entry in one

of the menus which gives the user detailed movie information (e.g. actors, short

description, etc.). The generic base classes will be re-used when new movies are

added to the movie database (or within a completely di�erent application) and or

not VoD content speci�c. The base classes implement a model that consists of:

objects and actions.

class AppObject

class AppObjectButton

class AppObjectLabel

class AppObjectEntry

class AppObjectImage

Each object represents a graphical piece of information on the screen. The Java

pseudo-code5 for these classes is listed above. Simple examples of such objects

are: button, label, image, etc. All objects share some common attributes such as

background color and sensitivity of the object to mouse clicks. Each object can

de�ne an associated action when the object is selected (either by mouse movement

or by clicking).

Actions implement a mechanism similar to call-backs in traditional GUI pro-

gramming. The di�erence, however, is that every action is a class in itself (versus

A VOD APPLICATION IMPLEMENTED IN JAVA 7

class AppAction

class AppActionWindowNew

class AppActionWindowQuit

class AppActionStreamPlay

class AppActionStreamPause

class AppActionStreamResume

class AppActionStreamStop

a function call). To associate an action with a button or graphics object, an ac-

tion needs to be created and attached to an object. Whenever the object becomes

activated, this action will be performed.

The application window class is intended to be used as a base class fromwhich the

VoD program classes are derived. The base application window class implements

and manages the screen and the objects displayed on it. A simple example of a

GUI with a background image and 2 buttons, Continue and Quit, can be denoted

as follows:

// my application class window derived from base class AppWindow

class MyApplication extends AppWindow f

public void init()f

setTitle(\My Application");

add(AppObjectImage (0,0,\bg.gif"));

add(AppObjectButton(10,35,\Continue", AppActionWindowNew(NextApp)));

add(AppObjectButton(30,35, \Quit", AppActionWindowQuit()));

g

g

// the next window has only a Quit button

class NextApp extends AppWindow f

public void init()f

setTitle(\Next Window");

add(AppObjectImage (0,0,\bg.gif"));

add(AppObjectButton(10,35,\Quit", AppActionWindowQuit()));

g

g

8 A. DE JONG, K. HSING, AND D. SU

An example of a VoD program implementation using the application base classes

as explained above is shown in �gure 4. The opening screen shows the user a

Continue and a Quit button.

NIST
VoD
NIST
VoD

Continue Quit

Rambo

Terminator

NIST Director

Figure 4. Example of a VoD program

After selecting Continue, a new window is shown which lists the movies available

on the server. Each movie entry is listed with a preview picture and some additional

information such as the movie title and actors. Selecting a movie opens up a VCR-

like interface. It allows the user to start playing the movie, to fast forward, or

invoke other common VCR playback functions.

Below is a list of classes that shows what is needed to implement the example

shown in �gure 4. Each class implements a window that can actually be displayed

on the screen. Upon user selection di�erent windows are displayed to allow the user

to browse the VoD server's contents.

class OpeningWindow

class MovieListingWindow

class VCRWindow

6. NIST VoD System

The Java approach as outlined in the previous sections is implemented in NIST's

VoD system. The system consists of a VoD server and two STUs. The VoD server

is con�gured with MPEG 2 storage space and delivery capability. NIST's server

is a Unix based workstation with 16 GBytes of external disk storage for content

(i.e. users menus and MPEG 2 Transport Streams). The server's DSM-CC is

implemented using CORBA 2.0 . The system is connected to the Internet and an

A VOD APPLICATION IMPLEMENTED IN JAVA 9

experimental optical �ber Asynchronous Transfer Mode (ATM) network, as shown

in �gure 5.

Internet

ATM

VoD
Server

Workstation
STU

PC
STU

Figure 5. NIST VoD Testbed

The STUs run the VoD application and provide the capability of decoding and

displaying MPEG 2 streams. Two STU systems demonstrate the Java based nav-

igation and control. A complete software based STU6 is implemented on a Unix

workstation and a PC-STU uses a hardware decoder for MPEG 2 decoding.

A session with NIST's VoD server is established over the Internet with a WWW

browser by simply selecting the VoD server's WWW home page. An applet that

can be launched from the home page establishes the S2 control ow with the DAVIC

based VoD server. If the STU does not have Internet capabilities but is a DAVIC

compliant STU, the STU simply establishes an S2 control ow with the VoD server.

In both scenarios, after S2 ow establishment, the STU loads the server's Init

program which, after execution, performs subsequent DSM-CC File read and

Directory open=resolve operations to retrieve the VoD program{consisting of Java

byte code and images{from the NIST VoD server. When executed on the STU,

the retrieved byte code provides the user with menus for navigation and control. A

simple menu could show the user the server's movie listing from which a selection

can made. When a movie is selected for viewing, an S1 data ow is established

from the server to the STU. A distributed stream pump implements the DSM-CC

Stream state machine which handles transport of MPEG 2 data to the STU. The

stream pump is capable of transporting MPEG 2 data over the Internet protocols

and over the ATM network by using ATM Adaptation Layer 5 (AAL5)[6].

New movies can be added to NIST's server by uploading them via the Internet

(e.g. ftp) or DSM-CC protocols. Only some additional Java code (See the examples

in the previous section) needs to be added to make the new movie appear in the

VoD menus to provide the user with detailed movie information.

10 A. DE JONG, K. HSING, AND D. SU

7. Summary

This article described the use of Java to implement a VoD application based on

the DSM-CC standard. A short description of the DAVIC framework and a more

detailed VoDmodel were introduced. The VoD program implements the user menus

to provide navigation and control for the VoD service. Using the Java language to

implement the VoD application provides several advantages. The �rst advantage

is that Java is platform independent. Secondly, Java allows dynamic additions of

objects to the runtime environment which reduces resource requirements on the

STU. Thirdly, and most importantly, Java provides a means to integrate the still

expanding popular Internet with DAVIC services.

An example is presented to demonstrate the feasibility of using Java to imple-

ment a VoD application. This VoD application is implemented as a demonstration

prototype at NIST. The prototype is integrated with NIST's VoD testbed, which

is connected to the Internet as well as an experimental ATM network. The VoD

testbed provides the infrastructure for NIST's interoperability test laboratory.

Notes

1. The Content Provider System (CPS) which is part of the DAVIC model is not shown here.

2. The Java interpreter itself is platform dependent.

3. Bandwidth requirements are not taken into consideration.

4. The base classes could implement MHEG-5 classes. However, a simple VoD application does

not need the exibility of an MHEG-5 engine. Using a proprietary set of base classes pro-

vides more than enough exibility for the service provider. Only interoperability of the Java

interpreter is required to ensure proper functioning of an STU with multiple vendor's servers.

5. The pseudo-code included is based on general Object-Oriented concepts.

6. See \http://mace.ncsl.nist.gov/vod/mpeg2ts.html" for more information

References

1. DAVIC, DAVIC Speci�cations 1.0, December 1995.

2. ISO/IEC, Information Technology{Generic Coding of moving pictures and associated audio

information, Digital Storage Media Command & Control, International Standard, ISO/IEC

13818-6, August 1996.

3. ISO/IEC, Information Technology{Support for Base-Level Interactive Applications, Coding

of Multimedia and Hypermedia Information, Draft International Standard, ISO/IEC 13522-

5, December 1995.

4. G. Cornell and C.S. Horstmann, Core Java, SunSoft, Sun Microsystems, Prentice Hall, 1996.

5. IONA, Orbix 2 Distributed Object Technology, Programming Guide, IONA Technologies

Ltd., Release 2.0, August 1996.

6. ATM Forum, AudiovisualMultimedia Services: Video on Demand Speci�cations 1.0, January

1996.

Received Date

A VOD APPLICATION IMPLEMENTED IN JAVA 11

Accepted Date

Final Manuscript Date

Table of Contents: Volume ()

Number 1

Numbers 2/3 (Special Issue on Computational Learning Theory)

Number 4

A VoD Application Implemented in Java . :

: :Alex de Jong, Karen Hsing, and David Su 275

A Bayesian Method for the Induction of Probabilistic Networks from Data

. :

: :Gregory F. Cooper and Edward Herskovits 309

Learning Boolean Functions in an In�nite Attribute Space : : :Avrim Blum 373

Technical Note: First Nearest Neighbor Classi�cation on Frey and Slate's

Letter Recognition Problem . :Terence C. Fogarty 387

Volume , No. ,

A VoD Application Implemented in Java .: :

: :Alex de Jong, Karen Hsing, and David Su 275

A Bayesian Method for the Induction of Probabilistic Networks from Data .

: Gregory F. Cooper and Edward Herskovits 309

Learning Boolean Functions in an In�nite Attribute Space : : : : : Avrim Blum 373

Technical Note: First Nearest Neighbor Classi�cation on Frey and Slate's

Letter Recognition Problem .: :Terence C. Fogarty 387

